EHRENFEUCHT-FRAÎSSÉ GAMES

Nicole Schweikardt
Institute for Computer Science
Johann Wolfgang Goethe-Universität Frankfurt am Main
Robert-Mayer-Str. 11–15, D-60325 Frankfurt am Main, Germany
schweika@informatik.uni-frankfurt.de

SYNONYMS
Ehrenfeucht games, EF-games

DEFINITION
The Ehrenfeucht-Fraïssé game (EF-game, for short) is played by two players, usually called the spoiler and the duplicator (in the literature, the two players are sometimes also called Samson and Delilah or, simply, player I and player II). The board of the game consists of two structures \(A \) and \(B \) of the same vocabulary. The spoiler’s intention is to show a difference between the two structures, while the duplicator tries to make them look alike. The rules of the classical EF-game are as follows: The players play a certain number \(r \) of rounds. Each round \(i \) consists of two steps. First, the spoiler chooses either an element \(a_i \) in the universe of \(A \) or an element \(b_i \) in the universe of \(B \). Afterwards, the duplicator chooses an element in the other structure, i.e., she chooses an element \(b_i \) in the universe of \(B \) if the spoiler’s move was in \(A \), respectively, an element \(a_i \) in the universe of \(A \) if the spoiler’s move was in \(B \).

After \(r \) rounds, the game finishes with elements \(a_1, \ldots, a_r \) chosen in \(A \) and \(b_1, \ldots, b_r \) chosen in \(B \), and exactly one of the two players has won the game. Roughly speaking, the duplicator has won if and only if the structures \(A \) and \(B \), restricted to the elements chosen during the rounds of the game, are indistinguishable. To give a precise description of the winning condition let us assume, for simplicity, that the vocabulary of the structures \(A \) and \(B \) only contains relation symbols. Precisely, the duplicator has won the game if and only if the following two conditions are met: (1) for all \(i,j \in \{1, \ldots, r\} \), \(a_i = a_j \) iff \(b_i = b_j \), and (2) for each arity \(k \), each relation symbol \(R \) of arity \(k \) in the vocabulary, and all \(i_1, \ldots, i_k \in \{1, \ldots, r\} \), the tuple \((a_{i_1}, \ldots, a_{i_k}) \) belongs to the interpretation of \(R \) in the structure \(A \) if and only if the tuple \((b_{i_1}, \ldots, b_{i_k}) \) belongs to the interpretation of \(R \) in the structure \(B \). Since the game is finite, one of the two players must have a winning strategy, i.e., he or she can always win the game, no matter how the other player plays.

MAIN TEXT
EF-games are a tool for proving expressivity bounds for query languages. They were introduced by Ehrenfeucht [1] and Fraïssé [3]. The fundamental use of the game comes from the fact that it characterizes first-order logic as follows: The duplicator has a winning strategy in the \(r \)-round EF-game on two structures \(A \) and \(B \) of the same vocabulary if, and only if, \(A \) and \(B \) satisfy the same first-order sentences of quantifier rank at most \(r \) (recall that the quantifier rank of a first-order formula is the maximum nesting depth of quantifiers occurring in the formula). This is known as the Ehrenfeucht-Fraïssé Theorem, and it gives rise to the following methodology for proving inexpressibility results, i.e., for proving that certain Boolean queries cannot be expressed in first-order logic: To show that a Boolean query \(Q \) is not definable in first-order logic, it suffices to find, for each positive integer \(r \), two structures \(A_r \) and \(B_r \) such that (1) \(A_r \) satisfies query \(Q \), (2) \(B_r \) does not satisfy query \(Q \), and (3) the duplicator has a winning strategy in the \(r \)-round EF-game on \(A_r \) and \(B_r \).

Using this methodology, one can prove, for example, that none of the following queries is definable in first-order logic: “Does the given structure’s universe have even cardinality?”, “Is the given graph connected?”, “Is the given graph a tree?” (cf., e.g., the textbook [4]). In fact, the described methodology is the major tool available for proving inexpressibility results when restricting attention to finite structures. Applying it, however, requires finding a winning strategy for the duplicator in the EF-game, and this often is a non-trivial task that involves complicated combinatorial arguments. Fortunately,
techniques are known that simplify this task, among them a number of sufficient conditions (e.g., Hanf-locality and Gaifman-locality) that guarantee the existence of a winning strategy for the duplicator (see e.g. the survey [2] and the textbook [4]).

Variants of EF-games exist also for other logics than first-order logic, e.g., for finite variable logics and for monadic second-order logic (details can be found in the textbook [4]).

CROSS REFERENCE
Locality, Logical Structure, Expressiveness of Query Languages, First-Order Logic

REFERENCES