Description Logics for Integration

Y. Angélica Ibáñez-García

KRDB Research Centre,
Faculty of Computer Science
Free University of Bozen-Bolzano

DEIS 2010
8-12 Nov.
Outline

1. Ontology-based Data Integration
 - OB Data Integration Framework
 - Issues in OB Data Integration

2. Description Logics
 - Reasoning in DLs
 - Query answering on Ontologies
 - Tractable DLs

3. Description Logic-based Data Integration

4. Discussion
 - Query rewriting
 - Non-monotonic negation
Outline

1. Ontology-based Data Integration
 - OB Data Integration Framework
 - Issues in OB Data Integration

2. Description Logics
 - Reasoning in DLs
 - Query answering on Ontologies
 - Tractable DLs

3. Description Logic-based Data Integration

4. Discussion
 - Query rewriting
 - Non-monotonic negation
Ontology-based Data Integration Framework

OB Data integration:
- unified and transparent access,
- global (or target) schema
- collection of data stored in multiple, autonomous, and heterogeneous data sources

More formally:
\[\langle G, S, M \rangle \]

where
- \(G \): global schema: viewed as a conceptual schema, expressed in logic (ontology)
- \(S \): data sources: wrapped as relational databases
- \(M \): mappings: semantically link data at the sources (\(S \)) with the ontology (\(G \))
Problems in OB Data Integration

- How to model the global schema:
 - provide a description of the data of interest in semantic terms,
 - represent the global view as a conceptual schema;
 - formalize it as logical theory (ontology)
 - use the resulting logical theory for reasoning, (e.g. query answering)

- How to model the sources, and the mappings

- How to answer queries expressed on the global schema
Outline

1. Ontology-based Data Integration
 - OB Data Integration Framework
 - Issues in OB Data Integration

2. Description Logics
 - Reasoning in DLs
 - Query answering on Ontologies
 - Tractable DLs

3. Description Logic-based Data Integration

4. Discussion
 - Query rewriting
 - Non-monotonic negation
Description Logics in a Nutshell

- Logics specifically designed to represent and reason on structured knowledge:
 - **Concepts**: sets of objects
 - **Roles**: binary relations between (instances of) concepts

- Knowledge Bases, aka **Ontologies**
 - **Intentional Knowledge**: TBoxes, general properties of concepts
 - **Extensional Knowledge**: ABoxes, assertions about individuals/objects

- Nice computational properties: decidability, **tractability** (in some cases)

- Trade-off between expressive power and computational complexity of reasoning
DLs have evolved from being used “just” in KR.

Novel applications of DLs:

- Databases:
 - schema design, schema evolution
 - query optimization
 - integration of heterogeneous data sources, data warehousing
- Conceptual modeling
- Foundation for the Semantic Web (variants of OWL correspond to specific DLs)
Reasoning over an Ontology

Reasoning Services

- **Ontology Satisfiability:** \mathcal{O} admits at least one model.
- **Concept Instance Checking:** c is an instance of a concept C in every model of \mathcal{O}.
- **Role Instance Checking:** a pair (a_1, a_2) of individuals is an instance of a role R in every model of \mathcal{O}.
- **Query Answering:** computing the certain answers to a query over \mathcal{O}.
An ontology imposes constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

To be able to deal with data efficiently: separate the contribution of \(A \) from the contribution of \(q \) and \(T \).

\(\Rightarrow \) Query answering by query rewriting

\(\Rightarrow \) Query answering by data completion
Queries over ontologies

A Conjunctive Query (CQ) over an Ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$

has the form:

$$q(\vec{x}) \leftarrow \text{conj}(\vec{x}, \vec{y})$$

where \vec{x} denotes the distinguished variables, \vec{y} the non-distinguished variables, $\text{conj}(\vec{x}, \vec{y})$ is a conjunction of atoms

The predicates in atoms are concepts and roles of the ontology.

Union of Conjunctive queries (UCQ)

$$Q(\vec{x}) \leftarrow \text{conj}_1(\vec{x}, \vec{y}_1)$$

Datalog notation

$$\ldots \ldots$$

$$Q(\vec{x}) \leftarrow \text{conj}_n(\vec{x}, \vec{y}_n)$$
Semantics of Queries

Let $O = \langle T, A \rangle$ be an ontology, $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ an interpretation of O, and $q(\vec{x}) \leftarrow \varphi(\vec{x}, \vec{y})$ a CQ.

An answer to $q(\vec{x}) \leftarrow \varphi(\vec{x}, \vec{y})$ **over** \mathcal{I}, **denoted** $q^\mathcal{I}$

is the set of tuples \vec{c} of constants of A such that there exists a tuple $\vec{o} \in \Delta^\mathcal{I} \times \ldots \times \Delta^\mathcal{I}$; and the formula $\varphi(\vec{c}, \vec{y})$ evaluates to true in $\mathcal{I}[\vec{y}/\vec{o}]$.

The certain answers to $q(\vec{x})$ **over** $O = \langle T, A \rangle$, **denoted** $\text{cert}(q, O)$

are the tuples \vec{c} of constants of A such that \vec{c} is an answer of q ($\vec{c} \in q^\mathcal{I}$) in every model \mathcal{I} of O.
Tractable Description Logics

- **DL-Lite:**
 - family of DLs optimized according to the tradeoff between expressive power and complexity of query answering, with emphasis on data
 - Nice computational properties for answering UCQs
 - same data complexity as relational databases
 - query answering can be delegated to a relational DB engine
 - Captures conceptual modeling formalism
 - Is at the basis of the OWL2 QL profile of OWL2

- **EL:**
 - is particularly suitable for applications employing ontologies that define very large numbers of classes and/or properties
 - ontology consistency, class expression subsumption, and instance checking can be decided in polynomial time
 - e.g. very large biomedical ontology SNOMED CT ($\approx 400,000$ axioms)
Ontology-based Data Integration
Description Logics
Description Logic-based Data Integration
Discussion
Reasoning in DLs
Query answering on Ontologies
Tractable DLs

Y. Angélica Ibáñez-García
Description Logics for Integration

\(DL-Lite_A \) Syntax

- **Concept expressions:**

\[
B ::= A \mid \exists Q \mid \delta(U_C) \\
C ::= \top_C \mid B \mid \neg B \mid \exists Q.C
\]

- **Value-domain expressions:**

\[
E ::= \rho(U_C) \\
F ::= \top_D \mid T_1 \mid \cdots \mid T_n
\]

- **Role expression:**

\[
Q ::= P \mid P^- \\
R ::= Q \mid \neg Q
\]

- **Attribute expressions:**

\[
V_C ::= U_C \mid \neg U_C
\]
Semantics of $DL-Lite_A$: objects vs. values

<table>
<thead>
<tr>
<th>Definition (An interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$)</th>
<th>Objects</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain: $\Delta^\mathcal{I}$</td>
<td>$\Delta^\mathcal{I}_O$</td>
<td>$\Delta^\mathcal{I}_V$</td>
</tr>
<tr>
<td>Constants: Γ</td>
<td>$c \in \Gamma_O$, $c^\mathcal{I} \in \Delta^\mathcal{I}_O$</td>
<td>$d \in \Gamma_V$, $d^\mathcal{I} \in \Delta^\mathcal{I}_V$</td>
</tr>
<tr>
<td>Concepts /Types</td>
<td>Concept C, $C^\mathcal{I} \subseteq \Delta^\mathcal{I}_O$</td>
<td>RDF datatype T_i, $T_i^\mathcal{I} \subseteq \Delta^\mathcal{I}_V$</td>
</tr>
<tr>
<td>Roles/ Attributes</td>
<td>Role R, $R^\mathcal{I} \subseteq \Delta^\mathcal{I}_O \times \Delta^\mathcal{I}_O$</td>
<td>Attribute V, $V^\mathcal{I} \subseteq \Delta^\mathcal{I}_O \times \Delta^\mathcal{I}_V$</td>
</tr>
</tbody>
</table>
Semantics of DL-Lite$_{A}$ constructs

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>top concept</td>
<td>\top_C</td>
<td>Δ^I_O</td>
</tr>
<tr>
<td>negation</td>
<td>$\neg C$</td>
<td>$\Delta^I \setminus C^I$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>$\exists Q$</td>
<td>${ o \mid \exists o' \mid (o, o') \in Q^I }$</td>
</tr>
<tr>
<td>attribute domain</td>
<td>$\delta(U)$</td>
<td>${ o \mid \exists v. (o, v) \in U^I }$</td>
</tr>
<tr>
<td>inverse role</td>
<td>P^-</td>
<td>${ (b, a) \mid (a, b) \in P^I }$</td>
</tr>
<tr>
<td>role negation</td>
<td>$\neg Q$</td>
<td>$(\Delta^I_O \times \Delta^I_O) \setminus Q^I$</td>
</tr>
<tr>
<td>top domain</td>
<td>\top_D</td>
<td>Δ^I_V</td>
</tr>
<tr>
<td>attribute range</td>
<td>$\rho(U)$</td>
<td>${ v \mid \exists o. (o, v) \in U^I }$</td>
</tr>
<tr>
<td>attribute negation</td>
<td>$\neg U$</td>
<td>$(\Delta^I_O \times \Delta^I_V) \setminus U^I$</td>
</tr>
</tbody>
</table>
DL-Lite\(_A\) Ontologies

TBox \(\mathcal{T}\)

- **Concept Inclusion:** \(B \sqsubseteq C\)
- **Role Inclusion:** \(Q \sqsubseteq R\)
- **Role Functionality:** \((\text{funct } Q)\)
- **Identification Constraints:** \((\text{id } BI_1, \ldots, I_n)\)

ABox \(\mathcal{A}\)

- **ABox Assertions:** \(A(a), P(a, b), U_C(a, d)\)

Notes:

- No functional or identifying role or attribute can be specialized by using it in the right-hand side of a role or attribute inclusion assertion.
Semantics of $DL\text{-}Lite_A$ assertions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \sqsubseteq C$</td>
<td>$B^I \subseteq C^I$</td>
</tr>
<tr>
<td>$Q \sqsubseteq R$</td>
<td>$Q^I \subseteq R^I$</td>
</tr>
<tr>
<td>$E \sqsubseteq F$</td>
<td>$E^I \subseteq F^I$</td>
</tr>
<tr>
<td>$U \sqsubseteq V$</td>
<td>$U^I \subseteq V^I$</td>
</tr>
<tr>
<td>(funct Q)</td>
<td>$\forall o, o_1, o_2. (o, o_1) \in Q^I \land (o, o_2) \in Q^I \rightarrow o_1 = o_2$</td>
</tr>
<tr>
<td>(funct U)</td>
<td>$\forall o, v_1, v_2. (o, v_1) \in U^I \land (o, v_2) \in U^I \rightarrow v_1 = v_2$</td>
</tr>
<tr>
<td>(id $B I_1, \ldots, I_n$)</td>
<td>I_1, \ldots, I_n identify instances of B</td>
</tr>
<tr>
<td>$A(c)$</td>
<td>$c^I \in A^I$</td>
</tr>
<tr>
<td>$P(a, b)$</td>
<td>$(a^I, b^I) \in P^I$</td>
</tr>
<tr>
<td>$U(c, d)$</td>
<td>$(c^I, \text{val}(d)) \in U^I$</td>
</tr>
</tbody>
</table>
Query answering in *DL-Lite*\(_A\)

- Based on query reformulation
- Given a (U)CQ \(q(x)\), and a satisfiable ontology \(O = \langle T, A \rangle\),
- rewrite \(q(x)\) into an FO query \(q^T(x)\) (independently of \(A\)) such that

\[
\text{for all } \bar{a}, \langle T, A \rangle \models q[\bar{a}] \iff A \models q^T[\bar{a}]
\]

- evaluate the query \(q^T\) over \(A\), seen as a complete DB
- Off-the-shelf RDBMSs can be used for evaluating \(q^T\)
 - rewritten queries can be of size \(|T| \cdot |q|\)
 - not scalable when \(|T|\) is large (even if \(|q|\) is relatively small
 - This rewriting approach is not applicable to other tractable DLs, e.g. \(\mathcal{EL}\)
Perfect rewriting in DL-$Lite_\mathcal{A}$

To compute the **perfect rewriting**, starting from the original (U)CQ: Iteratively get a CQ to be processed and either:

- **expand** positive inclusions & **simplify** redundant atoms, or
- **unify** atoms in the CQ to obtain a more specific CQ to be further expanded.

Each result of the above steps is added to the queries to be processed, until no further CQ can be added.

—

Note: negative inclusions, functionalities, and identification constraints play a role in ontology satisfiability, but not in query answering (i.e., we have **separability**).
Use the PIs as basic rewriting rules:

- when an atom in the query unifies with the head of the rule, substitute the atom with the body of the rule.

Apply in all possible ways unification between atoms in a query. Unifying atoms can make rules applicable that were not so before, and is required for completeness of the method.
Algorithm PerfectRef(Q, \mathcal{T}_P)

Input: union of conjunctive queries Q, set of DL-Lite_A PIs \mathcal{T}_P

Output: union of conjunctive queries PR

$PR := Q$

```
repeat
    $PR' := PR$
    for each $q \in PR'$ do
        for each $g$ in $q$ do
            for each PI $I$ in $\mathcal{T}_P$ do
                if $I$ is applicable to $g$ then
                    $PR := PR \cup \{\text{ApplyPI}(q, g, I)\}$;
                for each $g_1$, $g_2$ in $q$ do
                    if $g_1$ and $g_2$ unify then $PR := PR \cup \{\tau(\text{Reduce}(q, g_1, g_2))\}$;
    until $PR' = PR$

return $PR$
```
DL-Lite A TBox

Example

manager ⊑ employee
employee ⊑ person
employee ⊑ ∃ WORKS-FOR
∃ WORKS-FOR ⊑ project

Query:

\[q(x) \leftarrow \text{WORKS-FOR}(x, y), \text{project}(y) \]

Perfect Reformulation:

\[q(x) \leftarrow \text{WORKS-FOR}(x, y), \text{project}(y) \]
\[q(x) \leftarrow \text{WORKS-FOR}(x, y), \text{WORKS-FOR}(_, y) \]
\[q(x) \leftarrow \text{WORKS-FOR}(x, _) \]
\[q(x) \leftarrow \text{employee}(x) \]
\[q(x) \leftarrow \text{manager}(x) \]
Complexity of reasoning in DL-$Lite_A$

<table>
<thead>
<tr>
<th></th>
<th>ABox + TBox</th>
<th>data complexity</th>
<th>TBox + query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology satisfiability</td>
<td>PTIME</td>
<td>AC^0</td>
<td></td>
</tr>
<tr>
<td>Query answering for CQs and UCQs</td>
<td>PTIME</td>
<td>AC^0</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

In fact, reasoning (e.g. ontology satisfiability) can be done by constructing suitable FOL/SQL queries and evaluating them over the ABox: **FOL-rewritability**.
The \(\mathcal{EL} \) family

<table>
<thead>
<tr>
<th>construct</th>
<th>syntax</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>top</td>
<td>(\top)</td>
<td>(\Delta^I)</td>
</tr>
<tr>
<td>bottom</td>
<td>(\bot)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>atomic concept</td>
<td>(A)</td>
<td>(A^I \subseteq \Delta^I)</td>
</tr>
<tr>
<td>qualified existential restriction</td>
<td>(\exists P.C)</td>
<td>({ o \mid \exists o'. (o, o') \in P^I \land o' \in C^I })</td>
</tr>
<tr>
<td>conjunction</td>
<td>(C_1 \cap C_2)</td>
<td>(C_1^I \cap C_2^I)</td>
</tr>
<tr>
<td>roles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>atomic role</td>
<td>(P)</td>
<td>(P^I \subseteq \Delta^I \times \Delta^I)</td>
</tr>
<tr>
<td>TBox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concept inclusion</td>
<td>(C_1 \sqsubseteq C_2)</td>
<td>(C_1^I \subseteq C_2^I)</td>
</tr>
<tr>
<td>ABox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>membership assertions</td>
<td>(C'(a))</td>
<td>(a^I \in C^I)</td>
</tr>
<tr>
<td></td>
<td>(P(a, b))</td>
<td>((a^I, b^I) \in P^I)</td>
</tr>
</tbody>
</table>
Data Completion / Combined approach

- Extend ABox to the canonical model of \((\mathcal{T}, \mathcal{A}), \mathcal{I}_K\)
- Encode it as a finite structure, \(C_K\)
- Rewrite \(q\) into \(q^\dagger\) to ensure that the answers to \(q\) over \(C_K\) are correct
- \(C_K\) can be constructed by first-order queries:
- Avoid exponential blow up: polynomial rewritings for \(DL-Lite^N_{horn}\)
- Applicable to other DLs of the \(DL-Lite\) family, exponential rewriting
- Needs access to the data
Query rewriting for \mathcal{EL}

Rewrite a given CQ $q(\vec{x}) \leftarrow \varphi(\vec{x}, \vec{y})$ into an FO query q^\dagger such that

- the answers to q over \mathcal{I}_K are the same as the answers to q^\dagger over \mathcal{C}_K
- $| q^\dagger | = O(| q | \cdot | T |)$

$$q^\dagger(\vec{x}) \leftarrow \varphi \land \varphi_1 \land \varphi_2 \land \varphi_3$$

φ_1: answer variables and variables in cycles in q must be mapped to ABox

φ_2: if $R(x_1, x_2), R(x_3, x_2)$ in q and x_2 is mapped outside the ABox then $x_1 = x_3$

φ_3: if $R(x_1, x_2), S(x_3, x_2)$ in q and $R \neq S$ then x_2 must be mapped to ABox
Query rewriting, open questions

- is the exponential blowup unavoidable for role inclusions?
- is the exponential blowup unavoidable for positive existential queries?
- for which DLs pure rewriting can be polynomial?
- Alternative query rewriting techniques based on resolution for more expressive logics (with recursive rewritings)

 [Pérez-Urbina et al., 2010].
Outline

1. Ontology-based Data Integration
 - OB Data Integration Framework
 - Issues in OB Data Integration

2. Description Logics
 - Reasoning in DLs
 - Query answering on Ontologies
 - Tractable DLs

3. Description Logic-based Data Integration

4. Discussion
 - Query rewriting
 - Non-monotonic negation
Ontology-based data integration Systems

Ontology-based data integration System

is a triple $\mathcal{O}\langle \mathcal{T}, \mathcal{M}, \mathcal{S}\rangle$ where:

- \mathcal{T} is a TBox
- \mathcal{S} is a relational database representing the sources
- \mathcal{M} is a set of mapping assertions between \mathcal{T} and \mathcal{S}

The mapping assertions are a crucial part of an Ontology-Based Data Integration System: they are used to extract the data from the sources to “populate” the ontology \leadsto virtual ABox
Ontology-based data integration: the DL-Lite_A solution

- the data sources are assumed to be wrapped and presented as relational sources.
- data federation tools such as IBM Information Integrator can be used to integrate the sources into a single relational.
- Use DL-Lite_A ontologies (with mappings) for the conceptual view on the data.
- Exploit effectiveness of query answering,
- Take advantage of the distinction between objects and values in DL-Lite_A to deal with the notorious impedance mismatch problem.
Impedance mismatch problem

- In RDBs, information is represented in forms of tuples of values
- Ontologies, use both objects and values

- Use an alphabet Λ of function symbols, each with an associated arity.
- Values are denoted by constants from an alphabet Γ_V
- Instances of concepts are denoted by terms built out of Γ_V

$$f(d_1, \ldots, d_n), \text{ with } f \in \Lambda, \text{ and } d_i \in \Gamma_V$$

Example

If a person is identified by her SSN, we can introduce a function symbol $\text{pers}/1$. If IBN81B24 is a SSN, then $\text{pers}(\text{IBN81B24})$ denotes a person.
Mappings

A mapping assertion in \mathcal{M} has the form:

$$\Phi(\vec{x}) \leadsto \Psi(\vec{t}, \vec{y})$$

where

- Φ is an arbitrary SQL query of arity $n > 0$ over \mathcal{S},
- Ψ is a conjunctive query over \mathcal{T} of arity $n' > 0$ without non-distinguished variables,
- \vec{x}, \vec{y} are variables with $\vec{y} \subseteq \vec{x}$,
- \vec{t} are terms of the form $f(\vec{z})$, with $f \in \Lambda$ and $\vec{z} \subseteq \vec{x}$

Split version of \mathcal{M}

For each $X \in \Psi$

$$\Phi' \leadsto X$$

where Φ' is the projection of Φ over the variables occurring in X.
Semantics of mappings

\(\mathcal{I} \) satisfies a mapping assertion \(\Phi \rightsquigarrow \Psi \) w.r.t. \(S \) if for each tuple of values \(\vec{v} \in \text{Eval}(\Phi, S) \), and for each ground atom \(X \) in \(\Psi[\vec{x}/\vec{v}] \),

\[
\begin{align*}
A(s) & \quad \text{then } s^\mathcal{I} \in A^\mathcal{I} \\
T(s) & \quad \text{then } s^\mathcal{I} \in T^\mathcal{I} \\
P(s_2, s_2) & \quad \text{then } (s_1^\mathcal{I}, s_2^\mathcal{I}) \in P^\mathcal{I} \\
U(s_1, s_2) & \quad \text{then } (s_1^\mathcal{I}, s_2^\mathcal{I}) \in U^\mathcal{I}
\end{align*}
\]

if \(X \) has the form
Example

\[D_1[\text{SSN} : \text{STRING}, \text{PROJ} : \text{STRING}, \text{D} : \text{DATE}], \]
\[D_2[\text{SSN} : \text{STRING}, \text{NAME} : \text{STRING}] \]

\[M_1 : \text{SELECT SSN, PROJ, D} \leadsto tempEmp(pers(SSN)), \]
\[WORKS_FOR(pers(SSN), proj(PROJ)), \]
\[ProjName(proj(PROJ), PROJ), \]
\[until(pers(SSN), D) \]

\[M_2 : \text{SELECT SSN, NAME} \leadsto employee(pers(SSN)), \]
\[PersName(pers(SSN), NAME) \]
Semantics of OBDI systems

Model of an OBDI system

An interpretation \mathcal{I} is a model of $\mathcal{O}(\mathcal{T}, \mathcal{M}, S)$ if:

- \mathcal{I} is a model of \mathcal{T},
- \mathcal{I} satisfies \mathcal{M} w.r.t. S, i.e., \mathcal{I} satisfies every assertion in \mathcal{M} w.r.t. S.

An OBDI system \mathcal{O} is satisfiable if it admits at least one model.
Virtual ABox

Let $M \in \mathcal{M}$, $M = \Phi \leadsto X$.

$$A_{M,S} = \{X[\vec{x}/\vec{v}] \mid \vec{v} \in \text{Eval}(\Phi, S)\}$$

$$A_{\mathcal{M},S} = \{A_{M,S} \mid M \in \mathcal{M}\}$$

bottom-up approach:

- querying over $A_{\mathcal{M},S}$
- not really efficient in practice
- materializing the ABox is a PTIME process
- requires mechanisms for updating the ABox w.r.t. the database evolution
Top-Down Approach

Given an OBDI system $O\langle T, M, S \rangle$ the computation of the certain answers to an UCQ q consists of three steps:

1. **Rewriting**: Compute the perfect rewriting $q_{pr} = \text{PerfectRew}(q, T)$ of the original query q, using the inclusion assertions of the TBox T.

2. **Unfolding**: Compute from q_{pr} a new query q_{unf} by unfolding q_{pr} using (the split version of) the mappings M. q_{unf} is such that:

 $$\text{Eval}(q_{unf}, S) = \text{Eval}(q_{pr}, A_M, S)$$

3. **Evaluation**: Delegate the evaluation of q_{unf} to the relational DBMS managing S.

Y. Angélica Ibáñez-García
Description Logics for Integration
Unfolding

The unfolding step is crucial for avoiding materializing the virtual ABox

To unfold a query q_{pr} with respect to a set of mapping assertions:

1. For each non-split mapping assertion $\Phi_i(\vec{x}) \rightsquigarrow \Psi_i(\vec{t}, \vec{y})$:

$$Aux_i(\vec{x}) \leftarrow \Phi_i(\vec{x})$$

(view definition)

2. For each split version $\Phi_i(\vec{x}) \rightsquigarrow X_j(\vec{t}, \vec{y})$ of a mapping assertion,

$$X_j(\vec{t}, \vec{y}) \leftarrow Aux_i(\vec{x})$$

(clause)

3. unify each atom $X(\vec{z})$ in the body of q_{pr} (in all possible ways) with the head of a clause $X(\vec{t}, \vec{y}) \leftarrow Aux_i(\vec{x})$.

4. Substitute each atom $X(\vec{z})$ with $\theta(Aux_i(\vec{x}))$,

5. The unfolded query q_{unf} is the union of all queries q_{aux} obtained, together with the view definitions for Aux_i appearing in q_{aux}.
Computational complexity of Query answering

From the top-down approach to query answering, and the complexity results for $DL-Lite_A$, query answering in a $\mathcal{O} = \langle \mathcal{T}, \mathcal{S}, \mathcal{M} \rangle$ is:

- Very efficiently tractable in the size of the database \mathcal{S} (i.e., AC^0, and in fact FOL-rewritable).
- Efficiently tractable in the size of the TBox \mathcal{T} and the mappings \mathcal{M} (i.e., $PTIME$).
- Exponential in the size of the query (i.e., NP-complete).

Can we move to LAV or GLAV mappings? No, if we want to stay in AC^0 [Calvanese et al., 2008].
Outline

1. Ontology-based Data Integration
 - OB Data Integration Framework
 - Issues in OB Data Integration

2. Description Logics
 - Reasoning in DLs
 - Query answering on Ontologies
 - Tractable DLs

3. Description Logic-based Data Integration

4. Discussion
 - Query rewriting
 - Non-monotonic negation
The theoretical results indicate a good computational behavior in the size of the data. However, performance is a critical issue in practice:

- The rewriting consists of a large number of CQs. Query containment can be used to prune the rewriting. This is already implemented in the QuOnto system, but requires further optimizations.
- The SQL queries generated by the mapping unfolding are not easy to process by the DBMS engine (e.g., they may contain complex joins on skolem terms computed on the fly).
- Different mapping unfolding strategies have a strong impact on computational complexity. Experimentation is ongoing to assess the tradeoff.
- Further extensive experimentations are ongoing:
 - on artificially generated data;
 - on real-world use cases.
CWA or OWA?

Datalog\pm

- Generalizes the DL-Lite family of DLs
- \pm stratified negation while keeping Ontology querying tractable (polynomial in data complexity)
- Datalog alone can neither express disjointness nor functionality
- lack of value creation (e.g. employee $\sqsubseteq \exists WORKS-FOR$)
Additions to Datalog:

- Existentially quantified variables in rule heads
 \(\leadsto \) tuple generating dependencies (TGDs)
- Rule bodies of TGDs are guarded
 \(\leadsto \) guarded TGDs

\[
P(X) \land R(X, Y) \land Q(Y) \rightarrow \exists Z. R(Y, Z)
\]

- Bodies contain single atoms only \(\leadsto \) linear TGDs
- Negative constraints and keys, e.g.

\[
employee(X, Y) \land retired(X, Z) \rightarrow \bot
\]
A Normal TGD (NTGD) has the form

$$\forall X \forall Y \; \Phi(X, Y) \rightarrow \exists Z \; \Psi(X, Y)$$

- **guarded**: a positive atom in its body contains X, Y
- **linear**: is guarded, and has exactly one positive atom in its body

A normal Boolean conjunctive query (NBCQ) Q is an existentially closed conjunction of atoms and negated atoms

$$\exists \vec{X} p_1(\vec{X}) \land \ldots \land p_m(\vec{X}) \land \neg p_{m+1}(\vec{X}) \land \ldots \land \neg p_{m+n}(\vec{X})$$

Q is **safe** iff every variable in a negative atoms also occurs in a positive atom
Theorem

- Answering safe NBCQs in \textit{guarded Datalog}^{\pm} can be done in polynomial time in \textit{data complexity}
- Answering safe NBCQs in \textit{linear Datalog}^{\pm} is \textit{FO-rewritable}
Thank you!
References

C. Beeri, A.Y. Levy, and M. C. Rousset
Rewriting Queries Using Views in Description Logics.

A. Cali, G. Gottlob, and T. Lukasiewicz
A general datalog-based framework for tractable query answering over ontologies.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati,
Linking Data to Ontologies.

R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev
Combined FO Rewritability for Conjunctive Query Answering in DL-Lite.
Description Logics’09 (International Workshop on Description Logics), 2009.
Further Reading

Data complexity of query answering in description logics.

Data integration through DL-Lite_A and ontologies.
Proceedings of the 3rd Int. Workshop on Semantics in Data and Knowledge Bases (SDKB 2008)

Conjunctive query answering in the description logic \mathcal{EL} using a relational database system,

H. Perez-Urbina, B. Motik, I. Horrocks
Tractable query answering and rewriting under description logic constraints,
J. Applied Logic, 2010

R. Rosati and A. Almatelli.
Improving query answering over DL-Lite ontologies.