Monadic Datalog Containment on Trees

André Frochaux\(^1\) Martin Grohe\(^2\) Nicole Schweikardt\(^1\)

\(^1\)Goethe-University Frankfurt am Main, Germany
\(^2\)RWTH Aachen, Germany

AMW 2014
Universidad Nacional de Colombia
June 5th, 2014
Monadic Datalog

A program \mathcal{P} in monadic Datalog (for short: mDatalog) is a finite set of Datalog rules r of the form

$$h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_n(\vec{x}_n).$$

The semantics is defined by the immediate consequence operator $T_\mathcal{P}$.

Example:

$$\text{Reach}(x) \leftarrow \text{Red}(x)$$
$$\text{Reach}(x) \leftarrow \text{Reach}(y), \ E(y, x)$$
Monadic Datalog

A program \(\mathcal{P} \) in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules \(r \) of the form

\[
h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_n(\vec{x}_n).
\]

The semantics is defined by the *immediate consequence operator* \(\mathcal{T}_\mathcal{P} \).

Example:

\[
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Red}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y), E(y, x)
\end{align*}
\]

\[
\mathcal{T}_\mathcal{P}^0(G) = \left\{ \begin{array}{l}
\text{Red}(a), E(a, b), E(a, d), \\
E(b, a), \ldots, E(i, h)
\end{array} \right\}
\]

G:

```
g --- h ----- i
  |       |
  v       v
  d       f
    |     |
    v     v
  e --- c
    |     |
    v     v
  b --- a
```

A. Frochoux, M. Grohe, N. Schweikardt

Monadic Datalog Containment on Trees

2/8
Monadic Datalog

A program \mathcal{P} in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules r of the form

$$h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_n(\vec{x}_n).$$

The semantics is defined by the *immediate consequence operator* $\mathcal{T}_\mathcal{P}$.

Example:

$$\text{Reach}(x) \leftarrow \text{Red}(x)$$
$$\text{Reach}(x) \leftarrow \text{Reach}(y), E(y, x)$$

$$\mathcal{T}_\mathcal{P}^1(G) = \mathcal{T}_\mathcal{P}^0(G) \cup \{ \text{Reach}(a) \}$$
Monadic Datalog

A program \mathcal{P} in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules r of the form

$$
 h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_{n_r}(\vec{x}_{n_r}).
$$

The semantics is defined by the *immediate consequence operator* $T_\mathcal{P}$.

Example:

$$
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Red}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y), E(y, x)
\end{align*}
$$

$$
T^2_\mathcal{P}(G) = T^1_\mathcal{P}(G) \cup \{ \text{Reach}(b), \text{Reach}(d) \}
$$

G:

```
 a -- b -- c
|    |    |
|    |    |
|    |    | d
|    | e -- f
|    |    |
|    |    | g
|    |    |
|    |    | h
|    |    |
|    |    | i
```

A. Frochaux, M. Grohe, N. Schweikardt
Monadic Datalog Containment on Trees

2/8
Monadic Datalog

A program \mathcal{P} in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules r of the form

$$h(x) \leftarrow b_1(\vec{x}_1), \ b_2(\vec{x}_2), \ldots, \ b_n(\vec{x}_n).$$

The semantics is defined by the *immediate consequence operator* $T_{\mathcal{P}}$.

Example:

- $\text{Reach}(x) \leftarrow \text{Red}(x)$
- $\text{Reach}(x) \leftarrow \text{Reach}(y), \ E(y, x)$

$$T^3_{\mathcal{P}}(G) = T^2_{\mathcal{P}}(G) \cup \{ \text{Reach}(c) \}$$
Monadic Datalog

A program \(\mathcal{P} \) in \textit{monadic Datalog} (for short: \textit{mDatalog}) is a finite set of Datalog rules \(r \) of the form

\[
h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_n(\vec{x}_n).
\]

The semantics is defined by the \textit{immediate consequence operator} \(\mathcal{T}_\mathcal{P} \).

\textbf{Example:}

\[
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Red}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y), E(y, x)
\end{align*}
\]

\[
\mathcal{T}^4_\mathcal{P}(G) = \mathcal{T}^3_\mathcal{P}(G) \cup \{ \text{Reach}(f) \}
\]
Monadic Datalog

A program \mathcal{P} in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules r of the form

$$ h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_n(\vec{x}_n). $$

The semantics is defined by the *immediate consequence operator* $T_\mathcal{P}$.

Example:

$$ \text{Reach}(x) \leftarrow \text{Red}(x) $$
$$ \text{Reach}(x) \leftarrow \text{Reach}(y), \ E(y,x) $$

$$ T^5_\mathcal{P}(G) = T^4_\mathcal{P}(G) \cup \{ \text{Reach}(h), \text{Reach}(i) \} $$
A program \(\mathcal{P} \) in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules \(r \) of the form

\[
h(x) \leftarrow b_1(\vec{x}_1), b_2(\vec{x}_2), \ldots, b_{n_r}(\vec{x}_{n_r}).
\]

The semantics is defined by the *immediate consequence operator* \(\mathcal{T}_\mathcal{P} \).

Example:

\[
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Red}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y), \ E(y,x)
\end{align*}
\]

\[
\mathcal{T}^6_\mathcal{P}(G) = \mathcal{T}^5_\mathcal{P}(G) =: \mathcal{T}^\omega_\mathcal{P}(G)
\]
Monadic Datalog

A program \(P \) in \textit{monadic Datalog} (for short: \textit{mDatalog}) is a finite set of Datalog rules \(r \) of the form

\[
h(x) \leftarrow b_1(\vec{x}_1), \ b_2(\vec{x}_2), \ldots, \ b_n(\vec{x}_n_r).
\]

The semantics is defined by the \textit{immediate consequence operator} \(\mathcal{T}_P \).

\textbf{Example:}

\[
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Red}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y), \ E(y,x)
\end{align*}
\]

\[
\mathcal{T}_P^6(G) = \mathcal{T}_P^5(G) =: \mathcal{T}_P^\omega(G)
\]

Query: \(Q = (P, P), \ P \in \text{idb}(P), \ Q(A) := \{ a \mid P(a) \in \mathcal{T}_P^\omega(A) \} \)
Monadic Datalog

A program \mathcal{P} in *monadic Datalog* (for short: *mDatalog*) is a finite set of Datalog rules r of the form

$$h(x) \leftarrow b_1(\overrightarrow{x}_1), b_2(\overrightarrow{x}_2), \ldots, b_n(\overrightarrow{x}_n).$$

The semantics is defined by the *immediate consequence operator* $\mathcal{T}_\mathcal{P}$.

Example:

$$\text{Reach}(x) \leftarrow \text{Red}(x)$$
$$\text{Reach}(x) \leftarrow \text{Reach}(y), \ E(y,x)$$

$$\mathcal{T}_\mathcal{P}^6(G) = \mathcal{T}_\mathcal{P}^5(G) =: \mathcal{T}_\mathcal{P}^\omega(G)$$

Query: $Q = (\mathcal{P}, P), \ P \in \text{idb}(\mathcal{P}), \ Q(A) := \{a \mid P(a) \in \mathcal{T}_\mathcal{P}^\omega(A)\}$

$$Q = (\mathcal{P}, \text{Reach}), \ Q(G) = \{a, b, c, d, f, h, i\}$$
Σ-labeled Trees
Σ-labeled Trees
Σ-labeled Trees
Σ-labeled Trees

Σ: finite, unranked alphabet
Σ-labeled Trees

Σ: finite, unranked alphabet

- \text{label}_\alpha(x): \text{ node } x \text{ carries label } \alpha \in \Sigma
Σ-labeled Trees

Σ: finite, unranked alphabet

- $\text{label}_\alpha(x)$: node x carries label $\alpha \in \Sigma$

Unordered trees

- $\text{child}(x, y)$: y is child of x
- $\text{root}(x)$: node x is the root
- $\text{leaf}(x)$: node x is a leaf
- $\text{desc}(x, y)$: y is descendant of x
Σ-labeled Trees

Σ: finite, unranked alphabet

- **label**\(\alpha(x)\): node \(x\) carries label \(\alpha \in \Sigma\)

Unordered trees

- **child**\((x, y)\): \(y\) is child of \(x\)
- **root**\((x)\): node \(x\) is the root
- **leaf**\((x)\): node \(x\) is a leaf
- **desc**\((x, y)\): \(y\) is descendant of \(x\)
Σ-labeled Trees

Σ: finite, unranked alphabet

- $\text{label}_\alpha(x)$: node x carries label $\alpha \in \Sigma$

Unordered trees

- $\text{child}(x, y)$: y is child of x
- $\text{root}(x)$: node x is the root
- $\text{leaf}(x)$: node x is a leaf
- $\text{desc}(x, y)$: y is descendant of x

Ordered trees

- $\text{fc}(x, y)$: y is the first child of x
- $\text{ns}(x, y)$: y is the next sibling of x
- $\text{ls}(x)$: x is the last sibling
- $\text{root}(x), \text{leaf}(x), \text{child}(x, y), \text{desc}(x, y)$
Query Containment Problem (QCP)

Let τ be a schema for Σ-labeled trees.
Let Q_1 and Q_2 be queries in mDatalog(τ). Then we say:

$$Q_1 \subseteq Q_2,$$ iff $$Q_1(T) \subseteq Q_2(T)$$ for every Σ-labeled tree T

QCP for unary queries in mDatalog(τ) on Σ-labeled trees

Input: Queries Q_1 and Q_2 in mDatalog(τ).

Output: Yes, if $Q_1 \subseteq Q_2$,
No, otherwise.
Results

Previously known:

Containment of mDatalog over arbitrary finite structures:

Results

Previously known:

Containment of mDatalog over arbitrary finite structures:

Gottlob/Koch (2002): mDatalog(τ_{GK}) on ordered Σ-labeled trees is EXPTIME-hard and decidable.
Results

Previously known:

Containment of mDatalog over arbitrary finite structures:

Gottlob/Koch (2002): \(\tau_{GK} : fc, ns, ls, root, leaf, (label_\alpha)_{\alpha \in \Sigma} \)

mDatalog(\(\tau_{GK} \)) on ordered \(\Sigma \)-labeled trees is EXPTIME-hard and decidable.
Results

Theorem:
\[\tau_u : \text{child}, (\text{label}_\alpha)_{\alpha \in \Sigma} \]

The \text{QCP} for Boolean \text{mDatalog}(\tau_u) on unordered \Sigma-labeled trees is \text{EXPTIME-hard}.

Corollary:
\[\tau_o : \text{fc}, \text{ns}, (\text{label}_\alpha)_{\alpha \in \Sigma} \]

The \text{QCP} for Boolean \text{mDatalog}(\tau_o) on ordered \Sigma-labeled trees is \text{EXPTIME-hard}.

Previously known:

Containment of \text{mDatalog} over arbitrary finite structures:

- Cosmadakis et al (1988): \text{EXPTIME-hard} and in \text{2EXPTIME}.
- Gottlob/Koch (2002): \text{mDatalog}(\tau_{\text{GK}}) on ordered \Sigma-labeled trees is \text{EXPTIME-hard} and decidable.
Results

Theorem: $\tau_u : \text{child}, (\text{label}_{\alpha})_{\alpha \in \Sigma}$

The QCP for Boolean mDatalog(τ_u) on unordered Σ-labeled trees is EXPTIME-hard.

Corollary: $\tau_o : \text{fc}, \text{ns}, (\text{label}_{\alpha})_{\alpha \in \Sigma}$

The QCP for Boolean mDatalog(τ_o) on ordered Σ-labeled trees is EXPTIME-hard.

Theorem: $\tau_{\text{child}}^{\text{GK}} : \text{fc}, \text{ns}, \text{ls}, \text{child}, \text{root}, \text{leaf}, (\text{label}_{\alpha})_{\alpha \in \Sigma}$

The QCP for unary mDatalog($\tau_{\text{child}}^{\text{GK}}$) on ordered Σ-labeled trees belongs to EXPTIME.

Corollary: $\tau_{u}^{\text{root,leaf}} : \text{child}, \text{root}, \text{leaf}, (\text{label}_{\alpha})_{\alpha \in \Sigma}$

The QCP for unary mDatalog($\tau_{u}^{\text{root,leaf}}$) on unordered Σ-labeled trees belongs to EXPTIME.
Sketching the Proof of the 2nd Theorem

Theorem:
The QCP for unary mDatalog(τ_{GK}^{child}) on ordered Σ-labeled trees belongs to \text{EXPTIME}.

Proof (sketch):
Given: unary Q_1 and Q_2 in mDatalog(τ_{GK}^{child}).
Question: decide, whether $Q_1 \subseteq Q_2$
Use the \textit{automata-theoretic method}:
Sketching the Proof of the 2nd Theorem

Theorem:

The QCP for unary mDatalog(τ_{GK}^{child}) on ordered Σ-labeled trees belongs to EXPTIME.

Proof (sketch):

Given: unary Q_1 and Q_2 in mDatalog(τ_{GK}^{child}).

Question: decide, whether $Q_1 \subseteq Q_2$

Use the automata-theoretic method:

(1) $Q_1, Q_2 \rightsquigarrow$ Boolean queries Q'_1, Q'_2 on binary trees, such that

$$Q_1 \subseteq Q_2 \iff Q'_1 \subseteq Q'_2$$
Sketching the Proof of the 2nd Theorem

Theorem:
The QCP for unary mDatalog(τ_{GK}^{child}) on ordered Σ-labeled trees belongs to EXPTIME.

Proof (sketch):
Given: unary Q_1 and Q_2 in mDatalog(τ_{GK}^{child}).
Question: decide, whether $Q_1 \subseteq Q_2$
Use the automata-theoretic method:
(1) $Q_1, Q_2 \mapsto$ Boolean queries Q_1', Q_2' on binary trees, such that
$$Q_1 \subseteq Q_2 \iff Q_1' \subseteq Q_2'$$
(2) $Q_1', Q_2' \mapsto$ tree automata A_{yes}^1 and A_{no}^2, such that
A_{yes}^1 accepts $T \iff Q_1'(T) = \text{yes}$ and A_{no}^2 accepts $T \iff Q_2'(T) = \text{no}$
Sketching the Proof of the 2nd Theorem

Theorem:
The QCP for unary mDatalog(τ^child_{GK}) on ordered Σ-labeled trees belongs to EXPTIME.

Proof (sketch):
Given: unary Q_1 and Q_2 in mDatalog(τ^child_{GK}).
Question: decide, whether $Q_1 \subseteq Q_2$
Use the automata-theoretic method:
(1) $Q_1, Q_2 \Rightarrow$ Boolean queries Q'_1, Q'_2 on binary trees, such that
\[Q_1 \subseteq Q_2 \iff Q'_1 \subseteq Q'_2 \]
(2) $Q'_1, Q'_2 \Rightarrow$ tree automata A^yes_1 and A^no_2, such that
\[A^\text{yes}_1 \text{ accepts } T \iff Q'_1(T) = \text{yes} \quad \text{and} \quad A^\text{no}_2 \text{ accepts } T \iff Q'_2(T) = \text{no} \]
(3) Construct the product automaton $B : \mathcal{L}(B) = \mathcal{L}(A^\text{yes}_1) \cap \mathcal{L}(A^\text{no}_2)$.
Test: $\mathcal{L}(B) = \emptyset$?

Note that $\mathcal{L}(B) \neq \emptyset$ if, and only if, $Q_1 \nsubseteq Q_2$.

A. Frochoux, M. Grohe, N. Schweikardt

Monadc Datalog Containment on Trees

6/8
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_1^{yes}: A_1^{yes} accepts $T \iff Q'_1(T) = \text{yes}$.

(2b) Construct tree automaton A_2^{no}: A_2^{no} accepts $T \iff Q'_2(T) = \text{no}$.
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_1^{yes}: A_1^{yes} accepts $T \iff Q'_1(T) = \text{yes}$.

(2b) Construct tree automaton A_2^{no}: A_2^{no} accepts $T \iff Q'_2(T) = \text{no}$.

Translate Q'_2 into equivalent MSO-sentence φ_2 of the form

$$\forall X_1 \cdots \forall X_n \exists z_1 \cdots \exists z_\ell \bigvee_{j=1}^m \xi_j$$
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_1^{yes}: A_1^{yes} accepts $T \iff Q'_1(T) = \text{yes}$.

(2b) Construct tree automaton A_2^{no}: A_2^{no} accepts $T \iff Q'_2(T) = \text{no}$.

Translate Q'_2 into equivalent MSO-sentence φ_2 of the form

\[
\forall X_1 \cdots \forall X_n \exists Z_1 \cdots \exists Z_\ell \bigvee_{j=1}^{m} \xi_j
\]

\[
\neg \varphi_2 \equiv \exists X_1 \cdots \exists X_n \neg \exists Z_1 \cdots \exists Z_\ell \bigvee_{j=1}^{m} \xi_j
\]
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton \(A_1^{\text{yes}} \): \(A_1^{\text{yes}} \) accepts \(T \iff Q_1'(T) = \text{yes} \).

(2b) Construct tree automaton \(A_2^{\text{no}} \): \(A_2^{\text{no}} \) accepts \(T \iff Q_2'(T) = \text{no} \).

Translate \(Q_2' \) into equivalent MSO-sentence \(\varphi_2 \) of the form

\[
\forall X_1 \cdots \forall X_n \exists Z_1 \cdots \exists Z_\ell \bigvee_{j=1}^{m} \xi_j
\]

\[
\neg \varphi_2 \equiv \exists X_1 \cdots \exists X_n \neg \exists Z_1 \cdots \exists Z_\ell \bigvee_{j=1}^{m} \xi_j
\]

If query in TMNF (cf., Gottlob, Koch: PODS 2002)

\(\leadsto \) construction of \(A_2^{\text{no}} \) in 1-fold exponential time
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_1^{yes}: A_1^{yes} accepts $T \iff Q_1'(T) = \text{yes}$.

(2b) Construct tree automaton A_2^{no}: A_2^{no} accepts $T \iff Q_2'(T) = \text{no}$.

Translate Q_2' into equivalent MSO-sentence φ_2 of the form

$$
\forall X_1 \cdots \forall X_n \exists z_1 \cdots \exists z_\ell \bigvee_{j=1}^{m} \xi_j
$$

$$
\neg \varphi_2 \equiv \exists X_1 \cdots \exists X_n \neg \exists z_1 \cdots \exists z_\ell \bigvee_{j=1}^{m} \xi_j
$$

If query in TMNF (cf., Gottlob, Koch: PODS 2002)

$$
\leadsto \text{construction of } A_2^{\text{no}} \text{ in 1-fold exponential time}
$$

Problem:

By following this approach to construct A_1^{yes}, a second complementation leads to 2-fold exponential time.
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_1^{yes}: A_1^{yes} accepts $T \iff Q'_1(T) = yes$.

(2b) Construct tree automaton A_2^{no}: A_2^{no} accepts $T \iff Q'_2(T) = no$.

Key idea:

Boolean TMNF-query $Q'_1 \leadsto$ two-way alternating tree automaton (2ATA) \hat{A}_1^{yes}

(in polynomial time)
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_1^{yes}: A_1^{yes} accepts T \iff $Q'_1(T) = \text{yes}$.

(2b) Construct tree automaton A_2^{no}: A_2^{no} accepts T \iff $Q'_2(T) = \text{no}$.

Key idea:

Boolean TMNF-query Q'_1 \rightsquigarrow two-way alternating tree automaton (2ATA) \hat{A}_1^{yes} (in polynomial time)

\hat{A}_1^{yes} \rightsquigarrow tree automaton A_1^{yes} (in 1-fold exponential time)

Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A^{yes} accepts T \iff $Q'(T) = yes$

(2b) Construct tree automaton A^{no} accepts T \iff $Q'(T) = no$

Key idea:
Boolean TMNF-query Q' \mapsto two-way alternating tree automaton (2ATA) \hat{A}^{yes} (in polynomial time)
\hat{A}^{yes} \mapsto tree automaton A^{yes} (in 1-fold exponential time)

$\delta(X, c) = ((Y, \text{stay}) \land (Z, \text{stay})) \lor \ldots \lor ((\text{is_lc}, \text{stay}) \land (Y, \text{up}))$
Sketch (cont.): Zoom into Step (2)

(2a) Construct tree automaton A_{yes}^1 accepts T iff $Q'_{yes}^1(T) = yes$.

(2b) Construct tree automaton A_{no}^2 accepts T iff $Q'_{no}^2(T) = no$.

Key idea:

Boolean TMNF-query Q' \(\Rightarrow\) two-way alternating tree automaton (2ATA) \hat{A}_{yes}^1 (in polynomial time) \(\Rightarrow\) tree automaton A_{yes}^1 (in 1-fold exponential time) (implicit in Vardi: ICALP'98 / Maneth, Friese, Seidl: 2010)

\[
X(x) \leftarrow \text{lc}(y, x), \ Y(y) \\
\vdots \\
X(x) \leftarrow Y(x), \ Z(x)
\]

\[
\delta(X, c) = (((Y, \text{stay}) \land (Z, \text{stay})) \lor \ldots \lor (\text{is_lc}, \text{stay}) \land (Y, \text{up})))
\]
Final Remarks

Let τ be a schema for Σ-labeled trees and let $\text{desc} \in \tau$.

Theorem:

The QCP for unary mDatalog(τ) on Σ-labeled trees can be solved in 2-fold exponential time.
Let τ be a schema for Σ-labeled trees and let $\text{desc} \in \tau$.

Theorem:

The QCP for unary mDatalog(τ) on Σ-labeled trees can be solved in 2-fold exponential time.

Current work:

- Close the gap between the EXPTIME lower and the 2EXPTIME upper bound for the case where the descendant-axis is involved.

Thank you for your attention!
Final Remarks

Let τ be a schema for Σ-labeled trees and let $\text{desc} \in \tau$.

Theorem:
The QCP for unary $\text{mDatalog}(\tau)$ on Σ-labeled trees can be solved in 2-fold exponential time.

Current work:
- Close the gap between the EXPTIME lower and the 2EXPTIME upper bound for the case where the descendant-axis is involved
- Extend the results to related problems like Emptiness and Equivalence.
Let τ be a schema for Σ-labeled trees and let $\text{desc} \in \tau$.

Theorem:
The QCP for unary mDatalog(τ) on Σ-labeled trees can be solved in 2-fold exponential time.

Current work:
- Close the gap between the EXPTIME lower and the 2EXPTIME upper bound for the case where the descendant-axis is involved
- Extend the results to related problems like Emptiness and Equivalence.

Thank you for your attention!