Regular tree languages, cardinality predicates, and addition-invariant FO

Frederik Harwath
Nicole Schweikardt
Goethe-Universität Frankfurt am Main

STACS 2012
Paris
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Example: Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example: Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- **ranked** (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- **coloured** with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:

Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:

Trees with odd number of red leaves

```
odd  ⊥ ⊥ ⊥ ⊥ ⊥
```

```
```
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:

Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number \(r \) such that each node of a tree in the language has \(\leq r \) children)
- coloured with colours from a finite set \(\Sigma \).

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example: Trees with odd number of red leaves

\[
\text{odd} \quad \text{even} \quad \text{odd} \quad \text{odd} \quad \text{even} \quad \text{odd} \quad \text{even}
\]
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:

Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- **ranked** (there exists a number \(r \) such that each node of a tree in the language has \(\leq r \) children)
- **coloured** with colours from a finite set \(\Sigma \).

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:
Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:

Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number \(r \) such that each node of a tree in the language has \(\leq r \) children)

- coloured with colours from a finite set \(\Sigma \).

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example: Trees with odd number of red leaves
Regular tree languages — sets of finite, ranked, coloured trees recognized by (bottom-up) tree automata

Tree languages are sets of finite trees which are

- ranked (there exists a number r such that each node of a tree in the language has $\leq r$ children)
- coloured with colours from a finite set Σ.

Regular tree languages: tree languages recognized by (bottom–up) tree automata.

Example:

Trees with odd number of red leaves
FO: First–order logic with successor relations

First–order logic with

- unary colour predicates, e.g. $P_{\text{red}}, P_{\text{blue}}, \ldots$, for each colour from a finite set Σ,
- binary successor/child predicates S_1, S_2, \ldots, S_r, for some rank r.

Example:
Let $\Sigma := \{ \text{red}, \text{blue} \}$ and $r := 2$.

$$\phi := \forall u (P_{\text{red}}(u) \rightarrow (\exists v_1 \exists v_2 S_1(u, v_1) \land S_2(u, v_2) \land P_{\text{blue}}(v_1) \land P_{\text{blue}}(v_2))) \land (P_{\text{blue}}(u) \rightarrow ((\exists v S_1(u, v)) \rightarrow \forall v' \neg S_2(u, v'))) \land ((\exists v S_2(u, v)) \rightarrow \forall v' \neg S_1(u, v'))$$

$\phi \in L_{\text{FO}}$
FO: First–order logic with successor relations

First–order logic with

- unary colour predicates, e.g. $P_{\text{red}}, P_{\text{blue}}, \ldots$, for each colour from a finite set Σ,
- binary successor/child predicates S_1, S_2, \ldots, S_r, for some rank r.

Example:

Let $\Sigma := \{\text{red}, \text{blue}\}$ and $r := 2$.

$$\psi := \forall u (P_{\text{red}}(u) \rightarrow (\exists v_1 \exists v_2 S_1(u, v_1) \land S_2(u, v_2) \land P_{\text{blue}}(v_1) \land P_{\text{blue}}(v_2))) \land (P_{\text{blue}}(u) \rightarrow ((\exists v S_1(u, v)) \rightarrow \forall v' \neg S_2(u, v')) \land ((\exists v S_2(u, v)) \rightarrow \forall v' \neg S_1(u, v'))).$$
FO: First–order logic with successor relations

First–order logic with

- unary colour predicates, e.g. $P_{\text{red}}, P_{\text{blue}}, \ldots$, for each colour from a finite set Σ,
- binary successor/child predicates S_1, S_2, \ldots, S_r, for some rank r.

FO: First–order logic with successor relations

First–order logic with

- unary colour predicates, e.g. $P_{\text{red}}, P_{\text{blue}}, \ldots$, for each colour from a finite set Σ,
- binary successor/child predicates S_1, S_2, \ldots, S_r, for some rank r.

Example:

Let $\Sigma := \{\text{red}, \text{blue}\}$ and $r := 2$.

\[
\phi := \forall u (P_{\text{red}}(u) \rightarrow (\exists v_1 \exists v_2 S_1(u, v_1) \land S_2(u, v_2) \land P_{\text{blue}}(v_1) \land P_{\text{blue}}(v_2)))
\land (P_{\text{blue}}(u) \rightarrow ((\exists v S_1(u, v)) \rightarrow \forall v' \neg S_2(u, v')) \land ((\exists v S_2(u, v)) \rightarrow \forall v' \neg S_1(u, v'))) \]
FO: First–order logic with successor relations

First–order logic with
- unary *colour predicates*, e.g. $P_{\text{red}}, P_{\text{blue}}, \ldots$, for each colour from a finite set Σ,
- binary *successor/child predicates* S_1, S_2, \ldots, S_r, for some rank r.

Example:

Let $\Sigma := \{\text{red, blue}\}$ and $r := 2$.

$$
\varphi := \forall u \left(P_{\text{red}}(u) \rightarrow (\exists v_1 \exists v_2 S_1(u, v_1) \land S_2(u, v_2) \land P_{\text{blue}}(v_1) \land P_{\text{blue}}(v_2)) \right)
$$

$$
\land \left(P_{\text{blue}}(u) \rightarrow \left((\exists v S_1(u, v)) \rightarrow \forall v' \neg S_2(u, v') \right) \land \left((\exists v S_2(u, v)) \rightarrow \forall v' \neg S_1(u, v') \right) \right)
$$
FO: First–order logic with successor relations

First–order logic with

• unary colour predicates, e.g. P_{red}, P_{blue}, . . ., for each colour from a finite set Σ,
• binary successor/child predicates S_1, S_2, . . . , S_r, for some rank r.

Example:

Let $\Sigma := \{\text{red}, \text{blue}\}$ and $r := 2$.

$$\varphi := \forall u \left(P_{\text{red}}(u) \rightarrow (\exists v_1 \exists v_2 \ S_1(u, v_1) \land S_2(u, v_2) \land P_{\text{blue}}(v_1) \land P_{\text{blue}}(v_2)) \right)$$

$$\land \left(P_{\text{blue}}(u) \rightarrow \left((\exists v \ S_1(u, v)) \rightarrow \forall v' \neg S_2(u, v') \right) \land \left((\exists v \ S_2(u, v)) \rightarrow \forall v' \neg S_1(u, v') \right) \right)$$

$\in L_\varphi$
FO: First–order logic with successor relations

First–order logic with
- unary **colour predicates**, e.g. $P_{red}, P_{blue}, \ldots$, for each colour from a finite set Σ,
- binary **successor/child predicates** S_1, S_2, \ldots, S_r, for some rank r.

Example:

Let $\Sigma := \{\text{red, blue}\}$ and $r := 2$.

$$\varphi := \forall u \left(P_{red}(u) \rightarrow (\exists v_1 \exists v_2 S_1(u, v_1) \land S_2(u, v_2) \land P_{blue}(v_1) \land P_{blue}(v_2)) \right)$$

$$\land \left(P_{blue}(u) \rightarrow \left((\exists v S_1(u, v)) \rightarrow \forall v' \neg S_2(u, v') \right) \land \left((\exists v S_2(u, v)) \rightarrow \forall v' \neg S_1(u, v') \right) \right)$$

![Diagram 1](image1)

$\in L_\varphi$

![Diagram 2](image2)

$\notin L_\varphi$
Logic On Words — i.e. trees of rank 1

MSO(\textless) = regular languages \quad (\text{Büchi/Elgot/Trakhtenbrot})

(\text{MSO}(\textless) = \text{MSO})

\text{FO}(\textless) = \text{star-free regular languages} \quad (\text{McNaughton, Papert 71})

\text{FO} = \text{locally threshold testable languages} \quad (\text{Thomas 78})
Logic On Words — i.e. trees of rank 1

Question:
Given an automaton, is it decidable whether its language is definable in a given logic?

- (Büchi/Elgot/Trakhtenbrot)
- (McNaughton, Papert 71)
- (Thomas 78)
Logic On Words — i.e. trees of rank 1

Question:
Given an automaton, is it decidable whether its language is definable in a given logic?

Solution:
Characterisation of language classes by algebraic properties of their transition monoid.
Introduction

FO with cardinality predicates

Addition–invariant FO on trees

Logic On Words — i.e. trees of rank 1

Question:

Given an automaton, is it decidable whether its language is definable in a given logic?

Solution:

Characterisation of language classes by algebraic properties of their transition monoid.

Transition monoid:

- Each word induces a function from states to states (state at beginning of word \rightarrow state after word)
- The set of all such functions forms a finite monoid w.r.t function composition.
Logic On Words — i.e. trees of rank 1

\[\text{MSO}(\prec) = \text{regular languages} \quad \text{(Büchi/Elgot/Trakhtenbrot)} \]

\[(\text{MSO}(\prec) = \text{MSO}) \]

\[\text{FO}(\prec) = \text{star-free regular languages} \quad \text{(McNaughton, Papert 71)} \]

\[\text{FO} = \text{locally threshold testable languages} \quad \text{(Thomas 78)} \]
Logic On Words — i.e. trees of rank 1

$$\text{MSO}(\prec) = \text{regular languages}$$

$$\text{(MSO}(\prec) = \text{MSO})$$

$$\text{FO}(\prec) = \text{star-free regular languages}$$

$$= \text{aperiodic} \quad \text{(Schützenberger 65)}$$

$$\text{FO} = \text{locally threshold testable languages}$$

$$= \text{aperiodic & closed under guarded swaps} \quad \text{(Beauquier, Pin 89)}$$
Logic On Words — i.e. trees of rank 1

\[\text{MSO}(\prec) = \text{regular languages} \]
\[(\text{MSO}(\prec) = \text{MSO}) \]
\[\text{FO}(\prec) = \text{star-free regular languages} \]
\[= \text{aperiodic} \]
\[\text{FO} = \text{locally threshold testable languages} \]
\[= \text{aperiodic & closed under guarded swaps} \quad \text{(Schützenberger 65)} \]
\[= \text{aperiodic & closed under guarded swaps} \quad \text{(Beauquier, Pin 89)} \]

Decidable
Logic On Words — i.e. trees of rank 1

MSO(⟨) = regular languages
(MSO(⟨) = MSO)

FO(⟨) = star-free regular languages
 = aperiodic

FO = locally threshold testable languages
 = aperiodic & closed under guarded swaps

Decidable

Many further decidable characterisations known for extensions (e.g. modular quantifiers) and restrictions, e.g. FO^2(⟨), Δ_2(⟨), ΠΣ_1(⟨) of FO(⟨).
Logic on trees

<: descendant relation, i.e. transitive closure of parent–child relation.

\[\text{MSO}(<) = \text{regular tree languages} \]

\[(\text{MSO}(<) = \text{MSO}) \]

\[\text{FO}(<) \not\subseteq \text{aperiodic} \]

\[\text{FO} = \text{locally threshold testable languages} = \text{aperiodic & closed under guarded swaps} \]

(Thatcher, Wright 68/Doner 70)

(Potthoff 95)

(Benedikt, Segoufin 09)
Logic on trees

<: descendant relation, i.e. transitive closure of parent–child relation.

\[\text{MSO}(<) = \text{regular tree languages} \]
\[(\text{MSO}(<) = \text{MSO}) \]
\[\text{FO}(<) \not\subseteq \text{aperiodic} \]
\[\text{FO} = \text{locally threshold testable languages} \]
\[= \text{aperiodic & closed under guarded swaps} \]

(Thatcher, Wright 68/Doner 70)
(Potthoff 95)
(Benedikt, Segoufin 09)
Logic on trees

\prec: descendant relation, i.e. transitive closure of parent–child relation.

\[\text{MSO}(\prec) = \text{regular tree languages} \]
\[(\text{MSO}(\prec) = \text{MSO}) \]
\[\text{FO}(\prec) \subset \text{aperiodic} \]
\[\text{FO} = \text{locally threshold testable languages} \]
\[= \text{aperiodic & closed under guarded swaps} \]

Decidable

(Thatcher, Wright 68/Doner 70)

(Potthoff 95)

(Benedikt, Segoufin 09)
Logic on trees

\prec: descendant relation, i.e. transitive closure of parent–child relation.

$\text{MSO}(\prec) = \text{regular tree languages}$
($\text{Thatcher, Wright 68/Doner 70}$)

$(\text{MSO}(\prec) = \text{MSO})$

$\text{FO}(\prec) \subsetneq \text{aperiodic}$
(Potthoff 95)

$\text{FO} = \text{locally threshold testable languages}$
$\Rightarrow \text{aperiodic} \& \text{closed under guarded swaps}$
($\text{Benedikt, Segoufin 09}$)

Decidable

- Further decidable characterisations known, e.g. for $\mathbb{B}\Sigma_1(\prec, \prec_{dfs})$ [Bojańczyk, Segoufin, Straubing ICALP 08] and $\Delta_2(\prec)$ [Bojańczyk, Segoufin LICS 08].
Logic on trees

\(<\): descendant relation, i.e. transitive closure of parent–child relation.

\(\text{MSO}(\text{<}) = \) regular tree languages \hspace{1cm} \text{(Thatcher, Wright 68/Doner 70)}

\((\text{MSO}(\text{<}) = \text{MSO})\)

\(\text{FO}(\text{<}) \subsetneq \) aperiodic \hspace{1cm} \text{(Potthoff 95)}

\(\text{FO} = \) locally threshold testable languages

\(=\) aperiodic & closed under guarded swaps \hspace{1cm} \text{(Benedikt, Segoufin 09)}

\textbf{Decidable}

- Further decidable characterisations known, e.g. for \(\mathcal{B}\Sigma_1(\text{<, <}_\text{dfs})\) \[\text{Bojańczyk, Segoufin, Straubing ICALP 08}\] and \(\Delta_2(\text{<})\) \[\text{Bojańczyk, Segoufin LICS 08}\].

- **Longstanding open problem:** Find a decidable characterisation of \(\text{FO}(\text{<})\)!
First main result

FO_{card} : FO with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to FO_{card}:

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is FO-definable iff it is closed under guarded swaps and aperiodic.

We prove:

Theorem: (H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.
First main result

$\text{FO}_{\text{card}} : \text{FO}$ with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to FO_{card}:

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is FO-definable iff it is closed under guarded swaps and aperiodic.

We prove:

Theorem: (H., Schweikardt STACS 12)
A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.
First main result

FO_{card} : FO with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to FO_{card}:

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is FO-definable iff it is closed under guarded swaps and aperiodic.

We prove:

Theorem:

(H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.
First main result

$\text{FO}_{\text{card}} :$ FO with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to FO_{card}:

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is FO-definable iff it is closed under guarded swaps and aperiodic.

We prove:

Theorem: (H., Schweikardt STACS 12)
A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.
First main result

\(\text{FO}_{\text{card}} : \) \(\text{FO} \) with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is \(\text{FO}_{\text{card}} \)-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to \(\text{FO}_{\text{card}} \):

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is \(\text{FO} \)-definable iff it is closed under guarded swaps and aperiodic.

We prove:

Theorem: (H., Schweikardt STACS 12)
A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is closed under guarded swaps and closed under transfer.
First main result

FO_{card} : FO with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to FO_{card}:

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is FO-definable iff it is closed under guarded swaps and aperiodic.

We prove:

\textbf{Theorem:} \hspace{1cm} (H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.
Concatenation and transition monoids for trees

- **Context**: tree with designated leaf ("hole").
Concatenation and transition monoids for trees

- **Context**: tree with designated leaf ("hole").
Concatenation and transition monoids for trees

- **Context**: tree with designated leaf ("hole").
- Contexts can be concatenated like words.
Concatenation and transition monoids for trees

- **Context**: tree with designated leaf (“hole”).
- Contexts can be concatenated like words.
Concatenation and transition monoids for trees

- **Context**: tree with designated leaf ("hole").
- Contexts can be concatenated like words.
- Given a tree automaton, a context induces a function from states to states (state at hole \rightarrow state at root).
Concatenation and transition monoids for trees

- **Context**: tree with designated leaf ("hole").
- Contexts can be concatenated like words.
- Given a tree automaton, a context induces a function from states to states (state at hole \mapsto state at root).
- Generalises the notion of a transition monoid to tree automata.
Closure under guarded swaps

(Benedikt, Segoufin ToCL 09)

A tree language L is closed under guarded swaps, if L is closed under k-guarded vertical swaps and k-guarded horizontal swaps, for some $k \in \mathbb{N}$.
k-guarded vertical swaps
k-guarded vertical swaps

Nodes u, v are k-similar: u, v have isomorphic subtrees up to depth k.
k-guarded vertical swaps

Nodes u, v are k-similar: u, v have isomorphic subtrees up to depth k
nodes u, v are k-similar: \iff
u, v have isomorphic subtrees up to depth k
k-guarded vertical swaps

L is closed under k-guarded vertical swaps, if

\[\in L \iff \in L \]
k-guarded horizontal swaps
k-guarded horizontal swaps

L is closed under k-guarded horizontal swaps, if
First main result

FO_{card} : FO with predicates expressing the cardinality of a structure modulo arbitrary integers.

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 10)
 A regular (word) language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

and the following result from FO to FO_{card}:

- (Benedikt, Segoufin ToCL 09)
 A regular tree language is FO-definable iff it is closed under guarded swaps and aperiodic.

We prove:

Theorem:

(H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.
Aperiodicity

L is aperiodic, if there exists a number ℓ such that:
Aperiodicity

L is aperiodic, if there exists a number ℓ such that:

$$\ell\text{-times} \in L \iff \ell+1\text{-times} \in L$$
Closure under transfer — vertical transfer

L is closed under vertical transfer, if there exists a number ℓ such that:

\[
\ell \text{-times } \triangle \rightarrow \ell + 1 \text{-times } \triangle
\]
Closure under transfer — vertical transfer

L is closed under **vertical transfer**, if there exists a number ℓ such that:

\[
|\triangle| = |\triangle| \quad \ell\text{-times} \quad \in L \quad \iff \quad \ell+1\text{-times} \quad \in L
\]
Closure under transfer — horizontal transfer

L is closed under **horizontal transfer**, if there exists a number ℓ such that:

$$\ell \text{-times } \triangle = \ell+1 \text{-times } \triangle \quad \subseteq \quad \ell \text{-times } \triangle \quad \ell+1 \text{-times } \triangle \quad \in L \quad \iff \quad \ell \text{-times } \triangle \quad \ell+1 \text{-times } \triangle \quad \in L$$
Proof of the result

Theorem: (H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

Proof methods:

⇒ Easy direction

⇐ Interesting direction

- A concept (“tree templates“) that allows to unify vertical and horizontal transfer.

- Techniques & results of [Benedikt, Segoufin ToCL 09] (take care of size of trees, lift embedding lemmas to multiple contexts etc.).

- Lift techniques of [Schweikardt, Segoufin LICS 10] using tree templates.
Proof of the result

Theorem:
(H., Schweikardt STACS 12)
A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is closed under guarded **swaps** and closed under **transfer**.

Proof methods:

“⇒“
Easy direction

“⇐“
Interesting direction

- A concept ("tree templates") that allows to unify vertical and horizontal transfer.
- Techniques & results of [Benedikt, Segoufin ToCL 09]
 (take care of size of trees, lift embedding lemmas to multiple contexts etc.).
- Lift techniques of [Schweikardt, Segoufin LICS 10] using tree templates.
Theorem: \((H., \text{Schweikardt STACS 12}) \)

A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is closed under guarded \textit{swaps} and closed under \textit{transfer}.

Proof methods:

\(\implies \) Easy direction

\(\iff \) Interesting direction

- A concept ("tree templates") that allows to unify vertical and horizontal transfer.
- Techniques & results of [Benedikt, Segoufin ToCL 09]
 (take care of size of trees, lift embedding lemmas to multiple contexts etc.).
- Lift techniques of [Schweikardt, Segoufin LICS 10] using tree templates.
Proof of the result

Theorem: (H., Schweikardt STACS 12)
A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

Proof methods:

\Rightarrow Easy direction

\Leftarrow Interesting direction

- A concept ("tree templates") that allows to unify vertical and horizontal transfer.
- Techniques & results of [Benedikt, Segoufin ToCL 09] (take care of size of trees, lift embedding lemmas to multiple contexts etc.).
- Lift techniques of [Schweikardt, Segoufin LICS 10] using tree templates.
Proof of the result

Theorem: (H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

Proof methods:

“⇒” Easy direction

“⇐” Interesting direction

- A concept ("tree templates") that allows to unify vertical and horizontal transfer.
- Techniques & results of [Benedikt, Segoufin ToCL 09] (take care of size of trees, lift embedding lemmas to multiple contexts etc.).
- Lift techniques of [Schweikardt, Segoufin LICS 10] using tree templates.
Proof of the result

Theorem: (H., Schweikardt STACS 12)

A regular tree language is FO_{card}-definable iff it is closed under guarded swaps and closed under transfer.

Proof methods:

“⇒” Easy direction

“⇐” Interesting direction

- A concept (“tree templates“) that allows to unify vertical and horizontal transfer.
- Techniques & results of [Benedikt, Segoufin ToCL 09] (take care of size of trees, lift embedding lemmas to multiple contexts etc.).
- Lift techniques of [Schweikardt, Segoufin LICS 10] using tree templates.
Decidability of closure under transfer

Lemma:

There exists an algorithm that, given a (bottom–up) tree automaton A as input, decides whether $L(A)$ is closed under transfer.

Putting this together with our first main result and the decidability of closure under guarded swaps proved in [Benedikt, Segoufin ToCL 2009] this yields:

Corollary:

There exists an algorithm that, given a (bottom–up) tree automaton A as input, decides whether $L(A)$ is FO_{card}–definable.
Decidability of closure under transfer

Lemma:
There exists an algorithm that, given a (bottom–up) tree automaton A as input, decides whether $L(A)$ is closed under transfer.

Putting this together with our first main result and the decidability of closure under guarded swaps proved in [Benedikt, Segoufin ToCL 2009] this yields:

Corollary:
There exists an algorithm that, given a (bottom–up) tree automaton A as input, decides whether $L(A)$ is FO_{card}–definable.
Deciding closure under transfer

- The algorithm simply enumerates all transition functions realized by contexts which satisfy the preconditions for applying transfer.
Deciding closure under transfer

- The algorithm simply enumerates all transition functions realized by contexts which satisfy the preconditions for applying transfer.
Deciding closure under transfer

- The algorithm simply enumerates all transition functions realized by contexts which satisfy the preconditions for applying transfer.

\[
\begin{align*}
\triangle = \triangle
\end{align*}
\]

\[
\begin{align*}
\ell\text{-times} & \quad \ell\text{-times} \\
\ell+1\text{-times} & \quad \ell+1\text{-times}
\end{align*}
\]
Deciding closure under transfer

- The algorithm simply enumerates all transition functions realized by contexts which satisfy the preconditions for applying transfer.

\[\triangle = \triangle \]

- Because of the condition \(|\triangle| = |\triangle| \), it is not clear a priori how many different contexts \(\triangle, \triangledown \) need to be considered.
Deciding closure under transfer — key idea

Key idea: “Parallel Pumping“ (for tree automaton \mathcal{A})

There exists a computable bound n such that, for all contexts \blacktriangle, \bigtriangleup with $|\blacktriangle| = |\bigtriangleup| > n$, there exist contexts \blacktriangle, \bigtriangleup satisfying:

- $|\blacktriangle| = |\bigtriangleup| \leq n,$
- \blacktriangle induces the same transition function as \blacktriangle on the state set Q of \mathcal{A},
- \bigtriangleup induces the same transition function as \bigtriangleup on Q.
Second main result

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 2010)
 A regular (word) language is FO_{card}–definable
 iff it is $+-+-\text{invariant-FO}$–definable.

That is, we prove:

Theorem: (H., Schweikardt STACS 2012)

A regular tree language is FO_{card}–definable
iff it is closed under guarded swaps and closed under transfer
iff it is $+-+-\text{invariant-FO}$–definable
Second main result

We extend the following result from words to trees:

- (Schweikardt, Segoufin LICS 2010)
 A regular (word) language is FO_{card}–definable
 iff it is $+\text{-invariant-FO}$–definable.

That is, we prove:

Theorem: (H., Schweikardt STACS 2012)

A regular tree language is FO_{card}–definable
iff it is closed under guarded swaps and closed under transfer
iff it is $+\text{-invariant-FO}$–definable
Addition–invariant FO

Definition: A FO(≺)-sentence \(\varphi \) is \(\prec \)-invariant on a tree \(t \) if for all linear orders \(\prec_1 \) and \(\prec_2 \) on the set of nodes of \(t \)
Definition: A FO(\preceq)-sentence φ is \preceq-invariant on a tree t if for all linear orders \preceq_1 and \preceq_2 on the set of nodes of t

$$ (t, \preceq_1) \models \varphi \iff (t, \preceq_2) \models \varphi. $$
Addition–invariant FO

Definition: A FO(≺)-sentence \(\varphi \) is \(\prec \)-invariant on a tree \(t \) if for all linear orders \(\prec_1 \) and \(\prec_2 \) on the set of nodes of \(t \):

\[
(t, \prec_1) \models \varphi \iff (t, \prec_2) \models \varphi.
\]

\(\prec \)-invariant-FO: FO(≺)–sentences which are \(\prec \)-invariant on all trees.
Addition–invariant FO

Definition: A FO(≺, +)-sentence φ is $\langle+\rangle$-invariant on a tree t \iff for all linear orders $≺_1$ and $≺_2$ on the set of nodes of t and for the matching addition relations $+_1$, $+_2$

\[(t, ≺_1, +_1) \models \varphi \iff (t, ≺_2, +_2) \models \varphi.\]

$≺$-invariant-FO: FO($≺$)–sentences which are $≺$-invariant on all trees.
Addition–invariant FO

Definition: A FO($≺, +$)-sentence φ is $+$-invariant on a tree t if for all linear orders $≺_1$ and $≺_2$ on the set of nodes of t and for the matching addition relations $+_1$, $+_2$

$$(t, ≺_1, +_1) \models \varphi \iff (t, ≺_2, +_2) \models \varphi.$$

$+$-invariant-FO: FO($≺, +$)-sentences which are $+$-invariant on all trees.
Expressiveness of invariant FO

- On finite labeled graphs, \prec-invariant-FO is more expressive than FO (Gurevich)
Expressiveness of invariant FO

- On finite labeled graphs, \preceq-invariant-FO is more expressive than FO (Gurevich)
- On trees \preceq-invariant-FO $= FO$ (Benedikt, Segoufin JSL 09)

What about \pm-invariant FO?
Expressiveness of invariant FO

- On finite labeled graphs, \prec-invariant-FO is more expressive than FO (Gurevich)
- On trees \prec-invariant-FO $=$ FO (Benedikt, Segoufin JSL 09)

What about $+$-invariant FO?

Example:

A $+$-invariant-FO–sentence φ such that

\[t \models \varphi \iff |t| \text{ is even.} \]

\[\varphi := \exists x \exists z \left(x + x = z \land \forall y \ (y \prec z \lor y = z) \right) \]
Expressiveness of invariant FO

- On finite labeled graphs, \prec-invariant-FO is more expressive than FO (Gurevich)
- On trees \prec-invariant-FO = FO (Benedikt, Segoufin JSL 09)

What about $+$-invariant FO?

Example:

A $+$-invariant-FO–sentence φ such that

\[
t \models \varphi \iff |t| \text{ is even.}
\]

\[
\varphi := \exists x \exists z \left(x + x = z \land \forall y \left(y \prec z \lor y = z \right) \right)
\]
Proof of second main result

Theorem: \((H.,\text{ Schweikardt STACS 2012}) \)

A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is \(+\text{-invariant-FO} \)-definable.

Proof idea:

\(\implies \) Each cardinality predicate is \(+\text{-invariant-FO} \)-definable, as seen in our previous example.

\(\impliedby \) Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof.

The proof uses:

- locality of \(\prec \)-invariant-FO from [Grohe, Schwentick MFCS 1998],
- results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
- interpretation of trees in these structures.
Proof of second main result

Theorem: (H., Schweikardt STACS 2012)

A regular tree language is FO_{card}–definable iff it is +-invariant-FO–definable.

Proof idea:

\Rightarrow Each cardinality predicate is +-invariant-FO–definable, as seen in our previous example.

\Leftarrow Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof. The proof uses:
 - locality of \prec-invariant-FO from [Grohe, Schwentick MFCS 1998],
 - results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
 - interpretation of trees in these structures.
Proof of second main result

Theorem: \((H., \text{Schweikardt STACS 2012}) \)

A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is \(+\)-invariant-\(\text{FO} \)-definable.

Proof idea:

\(\Rightarrow \) Each cardinality predicate is \(+\)-invariant-\(\text{FO} \)-definable, as seen in our previous example.

\(\Leftarrow \) Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof. The proof uses:
 - locality of \(\prec \)-invariant-\(\text{FO} \) from [Grohe, Schwentick MFCS 1998],
 - results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
 - interpretation of trees in these structures.
Proof of second main result

Theorem: (H., Schweikardt STACS 2012)

A regular tree language is FO_{card}--definable iff it is +-invariant-FO--definable.

Proof idea:

“⇒” Each cardinality predicate is +-invariant-FO--definable, as seen in our previous example.

“⇐” Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.

- Proving closure under guarded swaps is the most involved part of the proof. The proof uses:
 - locality of \prec-invariant-FO from [Grohe, Schwentick MFCS 1998],
 - results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
 - interpretation of trees in these structures.
Proof of second main result

Theorem: (H., Schweikardt STACS 2012)

A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is \(+\)-invariant-\(\text{FO} \)-definable.

Proof idea:

"⇒" Each cardinality predicate is \(+\)-invariant-\(\text{FO} \)-definable, as seen in our previous example.

"⇐" Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof. The proof uses:
 - locality of \(\prec \)-invariant-\(\text{FO} \) from [Grohe, Schwentick MFCS 1998],
 - results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
 - interpretation of trees in these structures.
Proof of second main result

Theorem: (H., Schweikardt STACS 2012)
A regular tree language is \(\text{FO}_{\text{card}} \)-definable iff it is \(+\text{-invariant-FO}\)-definable.

Proof idea:

\[\Rightarrow \] Each cardinality predicate is \(+\text{-invariant-FO}\)-definable, as seen in our previous example.

\[\Leftarrow \] Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof.

The proof uses:

- locality of \(\prec\)-invariant-FO from [Grohe, Schwentick MFCS 1998],
- results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
- interpretation of trees in these structures.
Proof of second main result

Theorem: (H., Schweikardt STACS 2012)
A regular tree language is FO_{card}–definable iff it is $+\text{-invariant}$-FO–definable.

Proof idea:

\Rightarrow Each cardinality predicate is $+\text{-invariant}$-FO–definable, as seen in our previous example.

\Leftarrow Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof. The proof uses:
 - locality of -invariant-FO from [Grohe, Schwentick MFCS 1998],
 - results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
 - interpretation of trees in these structures.
Proof of second main result

Theorem: \((H.,\) Schweikardt \ STACS 2012\)

A regular tree language is \(\text{FO}_{\text{card}}\)-definable iff it is \(+\text{-invariant-FO}\)-definable.

Proof idea:

\(\Rightarrow\) Each cardinality predicate is \(+\text{-invariant-FO}\)-definable, as seen in our previous example.

\(\Leftarrow\) Using our first main result, it suffices to prove closure under guarded swaps and transfer.

- Proving closure under transfer can be achieved by a reduction to results of [Schweikardt, Segoufin LICS 2010] by interpreting trees in words.
- Proving closure under guarded swaps is the most involved part of the proof. The proof uses:
 - locality of \(\prec\)-invariant-FO from [Grohe, Schwentick MFCS 1998],
 - results allowing to lift equivalence of ordered structures to a certain extension of Presburger arithmetic,
 - interpretation of trees in these structures.
Open questions

- What is the complexity of deciding closure under transfer?
Open questions

- What is the complexity of deciding closure under transfer?
- Are all $+$-invariant tree languages regular?
Open questions

- What is the complexity of deciding closure under transfer?
- Are all \(+\)-invariant tree languages regular?

Conjecture:

A regular tree language is \(\text{FO}_{\text{card}}\)-definable iff it is \(+\)-invariant-\(\text{FO}\)-definable.